

NcStudio Phoenix 门墙柜系统厂商手册

版次: 2025年7月23日 第3版

作者: 家装制造产品部

上海维宏电子科技股份有限公司 版权所有

目录

1	系统简介	3
	1.1 概述	3
	1.2 硬件连接示意图	3
	1.3 软件主界面	4
	1.3.1 加工界面	4
	1.3.2 控制器界面	5
	1.3.3 仿真界面	5
	1.3.4 界面说明	6
2	调试指导	7
	2.1 CNC 调试	7
	2.1.1 刀具编辑	8
	2.1.2 刀具和刀库参数设置	11
	2.1.3 参数修改日志	14
	2.1.4 保养组件	14
	2.1.5 功能注册	15
	2.2 CAM 参数设置	16
	2.2.1 元素选择项	16
	2.2.2 主轴加工参数	17
	2.2.3 特殊工艺参数	18
	2.2.4 机械规格参数	20
	2.2.5 M 代码配置参数	21
	226 户始结市代码参数	21

2.2.7 刀具主轴信息参数	22
2.2.8 刀具匹配	22
3 使用指导	23
3.1 导入板件流程	24
3.2 自建板件流程	24
3.2.1 拉手向导	25
3.2.2 合页向导	27
3.2.3 铰链&天地铰链向导	29
3.2.4 拉直器向导	32
3.2.5 门锁向导	34
3.2.6 闭门器向导	35
3.2.7 骨骼线向导	36
3.2.8 L 型骨骼线门板向导	38
3.2.9 T 型骨骼线门板向导	39
3.2.10 门自定义图形向导	40
3.2.11 百叶窗向导	42
3.2.12 腰圆榫向导	43
3.2.13 燕尾榫向导	44
3.2.14 正面拉米诺向导	45
3.2.15 侧面/斜面拉米诺向导	46
3.2.16 乐扣向导	47
3.2.17 海棠角向导	48
3.3 DXF 文件嵌入加工	50
3.4 模板收藏	51
4 使用举例	53
注 律 吉田	55

前言

首先感谢您选择 NcStudio Phoenix 门墙柜系统!

本手册对 NcStudio Phoenix 门墙柜系统 的使用做了详细介绍,包括系统简介、调试指导、使用指导等。

在安装和使用本产品前,请您仔细阅读本手册,这将有助于您快速熟悉产品,并能更好地使用它。

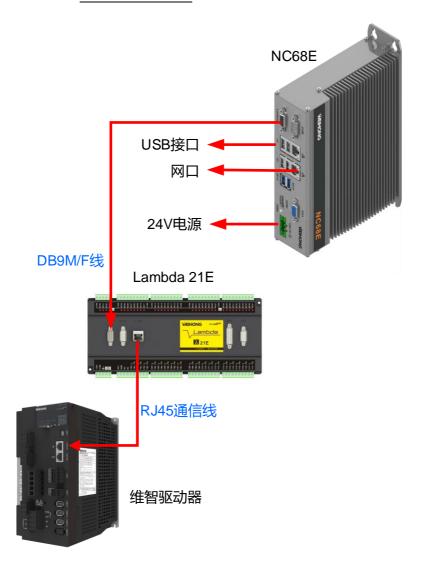
如果本产品进行改进或技术变更,恕不另行专门通知。您可以通过维宏股份网站 http://www.weihong.com.cn 查询有关信息。

修订历史

文档版本	发布日期	更新原因
R1	2024-7-31	第一次发布
R2	2024-8-30	更新 2.2CAM 参数设置
		1. 更新硬件说明
		2. 新增 2.1.3 参数修改日志
		3. 新增 2.1.4 保养组件
		4. 新增 2.1.5 功能注册
		5. 新增 2.2.1 元素选择项
		6. 新增 2.2.8 刀具匹配
		7. 更新 3.2.3 铰链&天地铰链向导
		8. 新增 3.2.6 闭门器向导
		9. 新增 3.2.7 骨骼线向导
R3	2025-7-23	10.新增 3.2.8L 型骨骼线门板向导
		11.新增 3.2.9T 型骨骼线门板向导
		12.新增 3.2.10 门自定义图形向导
		13.新增 3.2.11 百叶窗向导
		14.新增 3.2.12 腰圆榫向导
		15.新增 3.2.13 燕尾榫向导
		16.新增 3.2.14 正面拉米诺向导
		17. 更新 3.2.15 侧面/斜面拉米诺向导
		18.新增 3.2.16 乐扣向导
		19.新增 3.2.17 海棠角向导

1系统简介

1.1 概述

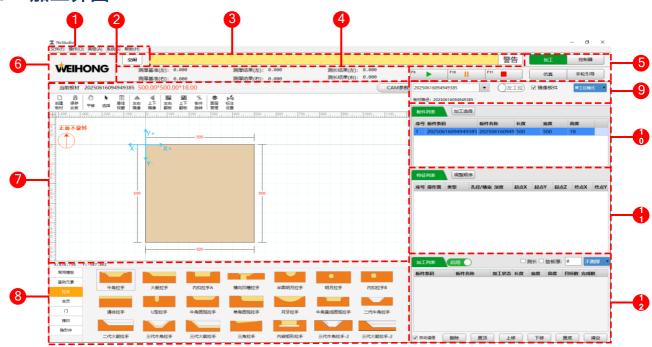

门墙柜软件是用于加工门墙柜相关工艺的软件。该软件集成了门墙柜专用 CAM,并能通过对应的 CAM 升级包升级,通过 CAM 不仅能使用向导生成拉手、合页、铰链、拉直器及门锁等工艺,还能通过导入文件解析识别的方式进行加工。

1.2 硬件连接示意图

● 工业计算机: NC68E

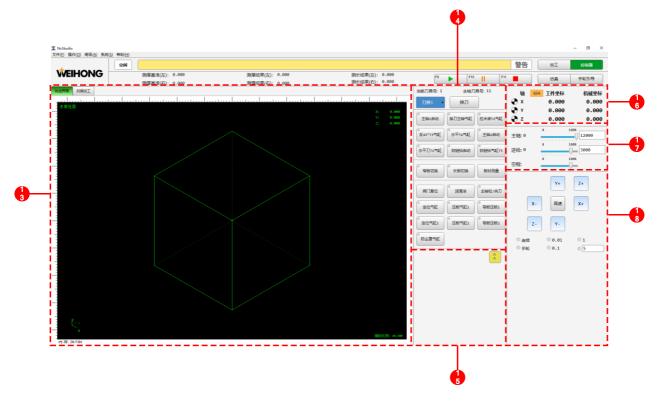
• 控制器: Lambda 21E

各硬件间的连接示意图参见硬件连接示意图。

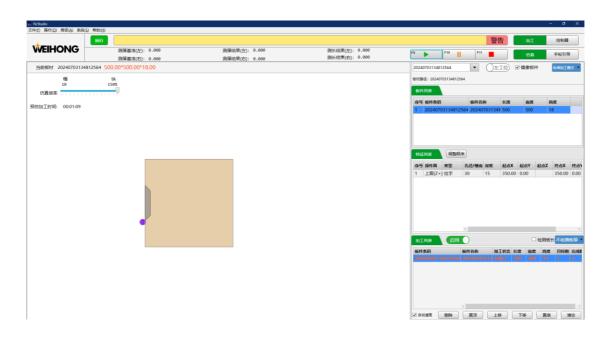


1.3 软件主界面

本部分主要介绍软件各界面的基本组成及用途,解释后续调试和使用时可能会遇到的名词及界面用法。


- **加工界面:**打开软件后显示出来的界面是**加工界面**,软件右上角会使用绿色高亮指示当前界面。
- 控制器界面:用于操作机床轴移动、相关端口开关及显示机床各个轴坐标。
- **仿真界面:** 用于对加工列表中选中的板件进行仿真加工。在相应板件进行加工时,**仿真 界面**会变成**轨迹界面**,用于显示当前加工的轨迹及刀具行为。

1.3.1 加工界面



1.3.2 控制器界面

1.3.3 仿真界面

1.3.4 界面说明

编号	名称	说明	
1	菜单栏	包含全局参数,刀具参数,基准设置以及版本信息等常规操作的操作与显示。	
2	状态栏	状态显示当前系统的状态,包含【空闲】【运行】【暂停】 【紧停】等状态。	
3	日志栏	日志栏用于显示系统当前运行出现的提示以及报错信息,双击日志栏可以查看系统过往日志信息。	
4	测量信息	用于显示系统【测长】【测宽】之后的测量值。	
5	加工控制	点击【加工】或【控制器】,可以切换系统的两个界面,并可以操作系统的启动、暂停和停止。	
6	Logo	Logo 展示。	
7	CAM 图形显示	显示当前选中或编辑的板件图形。	
8	向导按钮	在当前板件,通过点击向导内的任意按钮可以在图形界面添加对应的图形。	
9	加工模式	用于切换单工位模式或双工位模式。 系统加工模式可切换为【单工位】/【双工位】/【双工位双 文件】/【双工位多文件】。	
10	板件列表	显示当前系统载入的所有板件,通过双击板件列表内的板件,可以将板件加载到加工列表。	
11	特征列表	显示当前选中板件内的所有特征元素。	
12	加工列表	当前被选中的加工文件。	
13	轨迹界面	显示刀路轨迹。	
14	阀门控制区	操作机床阀门动作。	
15	刀路信息 显示当前载入的 nc 文件。		

编号	名称	说明		
16	坐标信息	系统当前位置信息,包括【当前坐标系】【工件坐标】【机 械坐标】。		
17	倍率调整	调整【主轴】【进给】【空程】的倍率。		
18	手动操作区	手动运动各轴。		

2 调试指导

本部分介绍如何完成 门墙柜系统 机床相关调试。

整个调试过程大致可以分为 CNC 和 CAM 两个部分。

2.1 CNC 调试

CNC 调试内容可分为

- 机床基础参数
- 刀具参数设置
 - 刀具编辑
 - 刀具以及刀库参数
- 对刀
- 设置工件零点

机床基础参数包括工作台行程上下限、减速比、丝杆螺距等,与其余机型无异,在此不赘述, 本部分着重讲解 **刀具参数设置**及**对刀** 等部分的调试。

2.1.1 刀具编辑

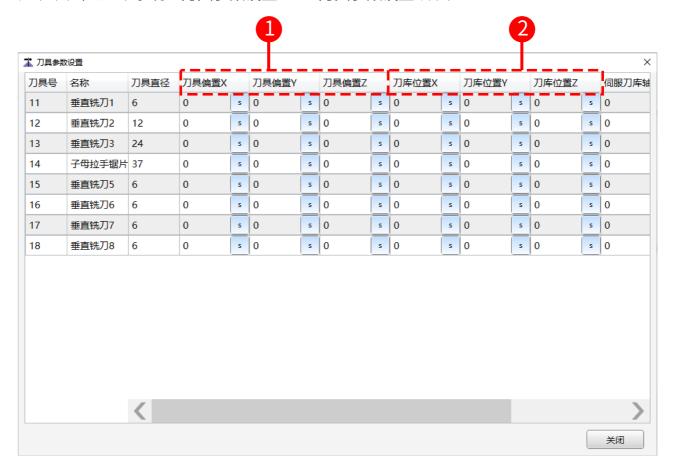
在菜单栏,点击 操作→刀具编辑 进入 刀具编辑 页面。

刀具编辑分为编辑模式和非编辑模式。

• 编辑模式:支持新增刀具、删除刀具等所有有关刀具的功能操作。

非编辑模式:仅支持【进刀速度】、【加工速度】等基础参数的设置。

编号	名称	说明		
1	刀具号	当前刀具的刀具号,自动加工过程中使用该刀具号调用该刀具,不支持重复。		
		 垂直铣刀:用于加工正面或反面元素的铣刀 垂直拉米诺铣刀:用于加工正反面拉米诺的成型铣刀 侧向拉米诺铣刀:用于加工侧面拉米诺的成型铣刀 侧向铣刀:用于加工所有侧面元素的铣刀 垂直钻头:用于加工加工正面或反面孔,且需要孔径与刀径一致 		
2	刀具类型	 侧向钻头:用于加工所有的侧面孔,且需要孔径与刀径一致 斜向铣刀:用于加工斜面拉米诺的锁紧孔的刀具,刀尖朝向 Y+ 斜向拉米诺锯片:用于技工加工斜向拉米诺的锯片,刀尖朝向 Y- 		
		 斜向切割锯片:用于切割下面的锯片,刀尖朝向Y+ X向锯片:用于加工正反面平行于X轴的正反面槽 Y向锯片:用于加工正反面平行于Y轴的正反面槽 X向拉米诺锯片:用于加工正反面平行于X轴正反面槽 Y向拉米诺锯片:用于加工正反面平行于Y轴正反面槽 乐扣铣刀:用于加工正面乐扣的铣刀 侧向锯片:用于加工侧面槽的锯片 侧向拉米诺锯片:用于加工侧面拉米诺的锯片 侧向拉米诺铣刀:用于加工侧面拉面诺的铣刀 		
3	铣边方向	刀具铣边时的默认方向。		



编号	名称	说明
4	名称	自定义刀具名称,便于客户辨别刀具。
5	进刀速度	板件由板外向板内进刀的默认速度。
6	加工速度	板内铣削加工的默认速度。
7	垂直单次进给	刀具每次进刀的最大深度。
8	最大加工深度	刀具在板内最大的加工深度。
9	避让距离	刀具从板外向板内加工时,X、Y方向的默认安全距离。 例:用正面铣刀加工拉手,需要从板件侧面进刀,刀具距离板件的距离。
10	安全距离	刀具从板外向板内加工时,进刀方向的默认安全距离。 例:垂直刀具加工正面,板件内的元素,刀尖距离板件 Z 方向的距离;侧向锯片加工侧槽时,锯片距离板件 Y 方向的距离等。
11	直径	刀具的直径,对于成型刀具,填写铣削面的最大直径。
12	锯片厚度	锯片的实际厚度。
13	主轴转速	使用该刀具加工时,主轴的转速。
14	端口	系统在操作该刀具的打开或关闭时,所使用的逻辑地址。
15	刀库换刀	勾选之后,系统在自动换刀时,认为该刀具处于刀库中,客 户需要在【刀具参数设置】中填写该刀具所处的刀库位置。
16	支持对刀	勾选之后,系统会在刀具测量中显示该把刀具,目前仅支持 常规垂直铣刀和水平铣刀的测量,暂不支持斜向刀具的自动 测量。
17	启用	默认启用,勾选取消时,CAM 中手动或自动选刀均无法调用该刀具。

2.1.2 刀具和刀库参数设置

在菜单栏,点击 **系统→刀具参数设置** 进入 **刀具参数设置** 界面。

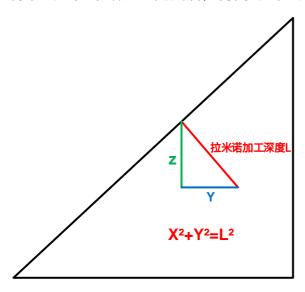
编号	名称			
		无对刀仪情况下,刀具相对于基准刀之间的偏置。		
1	刀具偏置	有对刀仪情况下,所有刀具以对刀仪为基准测量出的数值。 (下面详细描述刀具偏置调试方法)		
2	刀库位置	刀具在刀库中所处的位置。		

注: 刀具偏置调试方法

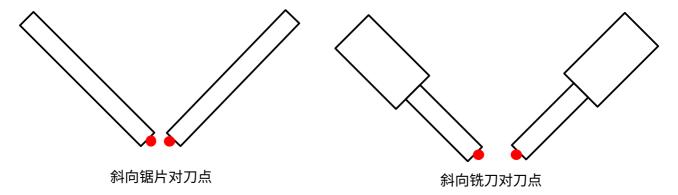
使用对刀仪需要在 菜单栏→系统→全局参数→对刀参数 设置垂直&水平对刀仪工作台行程上下限、对刀最低点位置以及垂直&水平对刀仪位置,然后通过 菜单栏→操作→刀具测量 进行对刀操作。

2. 对刀仪参数设置:

- a) **垂直刀基准刀具号**:设置一把垂直刀的基准刀号,对刀仪位置已该刀具运动到对刀 仪上方设置。
- b) **垂直固定对刀仪位置**:将垂直基准刀移动至对刀仪上方,将对应的机械坐标填入对刀仪位置参数中。
- c) 设置**垂直对刀仪 Z 向偏距**:将垂直对刀仪移动至 G54 工作台表面,记录此时的机械 坐标 Z1,将垂直对刀仪缓慢移动至垂直对刀仪,直至有对刀信号,记录机械坐标 Z2,计算 Z1-Z2,获得**垂直对刀仪 Z 向偏距。**
- d) 水平对刀仪参数参考垂直对刀仪的设置方式。
- 3. **竖直刀具**使用垂直对刀仪进行自动对刀操作可以测量得出刀具偏置 Z。
- 4. 同理,**水平刀具**使用水平对刀仪进行自动对刀操作可以测量得出刀具偏置 Y。
- 5. 各个竖直/水平刀具的刀具偏置 X 若存在相应的对刀仪,则操作如上述类似;若不存在对刀仪,则需使用测量工具测量基准刀与所测刀具之间的距离,得出一个大概偏置值填入,再通过打孔实际加工的方式进行校正。
- 6. **斜向锯片**的刀具偏置 X 与上述铣刀类型刀具测量方式类似,且**加工斜槽的锯片**对于刀具 偏置 X 的精度要求不高,故测量一个大概值基本可以直接使用。


而刀具偏置 Y 和 Z 要求精度较高,即使存在对刀仪也无法使用对刀仪进行准确测量,故需实际进行加工调整刀具偏置。

测量**加工斜槽的斜向锯片**的刀具偏置 X 后,使用其进行加工一道**剩余高度为 0,角度与锯片角度一致的斜槽**,加工结束后观察是否斜槽是否存在台阶,并测量板材宽度是否与原来一致。若存在台阶或板材宽度与原来不一致,意味着锯片刀具偏置 Y 或 Z 偏大或偏小,都需要依据实际情况调整。



7. **加工拉米诺的斜向锯片**刀具偏置 X 与同样上述铣刀类型刀具测量方式类似,使用该刀具加工一个拉米诺然后测量校正即可。

而该刀具的刀具偏置 Y 和 Z 与**加工斜槽的斜向锯片**不同,该刀具的刀具偏置 Y 和 Z 同时影响拉米诺加工深度以及加工高度,但加工深度可以使用勾股定理计算出刀具偏置 Y 和 Z 需要同时改变的数值且不会改变加工高度(如图所示),加工高度可单独调节其中一个偏置得到合适的位置。故实际测量中可采用先通过调整刀具偏置 Y 或 Z 其中一个取得准确的拉米诺加工高度后,再同时调整刀具偏置 Y 和 Z 取得一个准确的加工深度。

• 特殊刀具对刀点示意

2.1.3 参数修改日志

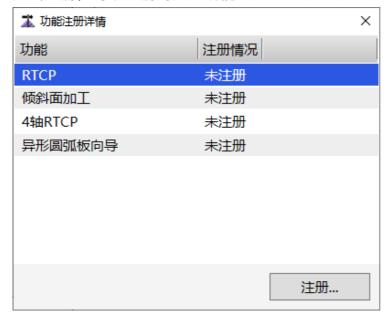
在菜单栏,点击 **系统→参数修改日志** 进入 **参数修改日志** 界面,可以查看参数修改的时间。 输入参数寻址和名称,设置开始时间和结束时间,搜索对应参数。

🛣 参数修改日志

条件搜索							
数据来源 D:\Weihong\NcStudio\ActiveConfig\ncstudio.log			重置				
参数寻址				搜索			
参数来源	参数名称	参数描述		修改前	修改后	修改时间	

2.1.4 保养组件

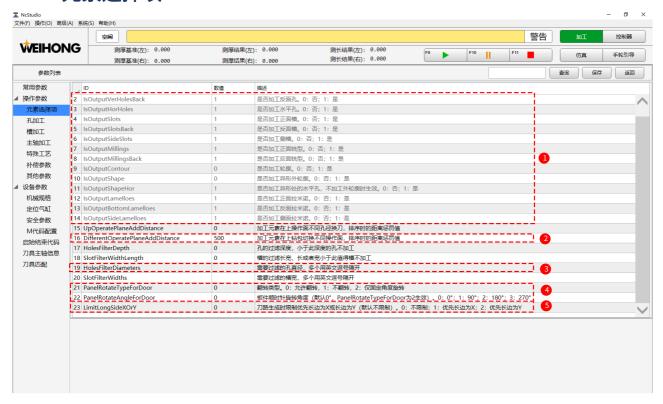
在菜单栏,点击 **系统→保养** 进入 **保养组件** 界面。


打开编辑,点击新增保养项目。编辑项目名称,设置计时方式、保养周期。

点击浏览添加图示和备注,点击确定。启用后会显示上次保养的时间和剩余时间。

2.1.5 功能注册

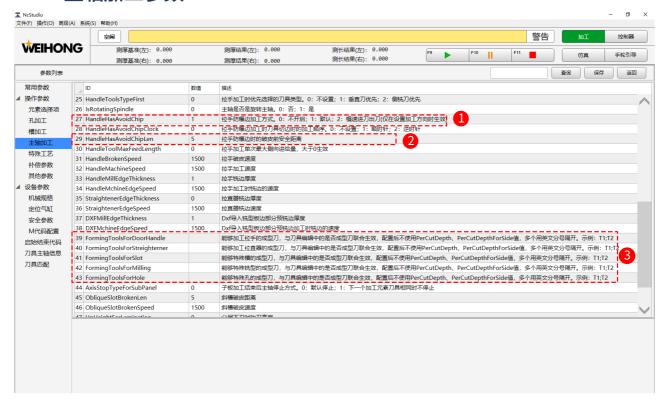
在菜单栏,点击 **帮助→功能注册** 进入 **功能注册** 详情界面。 点击注册,可以注册对应的功能。



2.2 CAM 参数设置

由于 CAM 参数较多,本文不一一列举解释。仅针对门墙柜机型调试过程中可能会使用到的 CAM 参数进行说明。

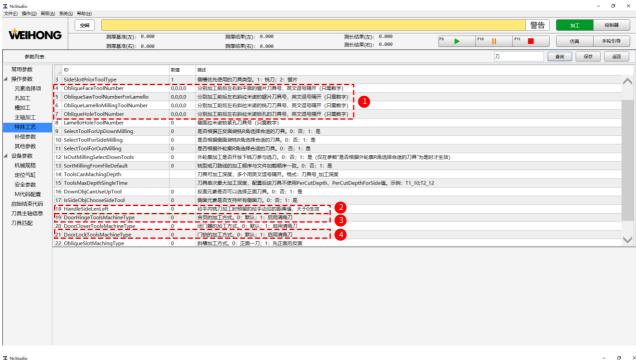
2.2.1 元素选择项

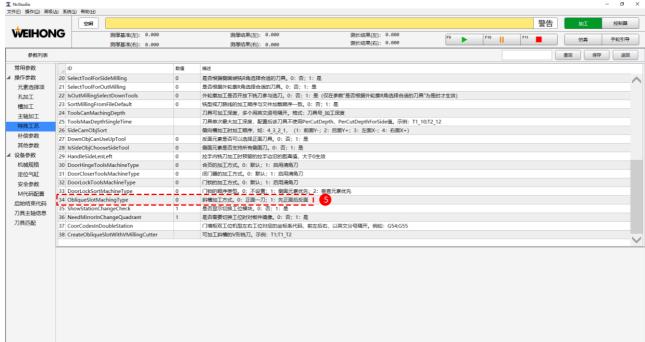


其中涉及到的部分参数的相关解释如下表:

编号	名称	说明
1	是否加工某元素	选择"否",加工时会跳过这个元素。
2	排序时的距离惩罚值	当机器频繁换刀时,可以调大惩罚值。
3	需要过滤的孔的直径	系统加工时会跳过对应直径的孔。
4 翻转类型和角度		设置翻转的类型和角度。
5	刀路限制优先长边	设置生成刀路时的长边优先是 X 还是 Y。

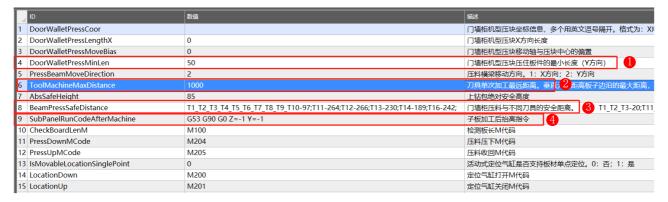
2.2.2 主轴加工参数




其中涉及到的部分参数的相关解释如下表:

编号	名称	说明
	拉手加工是否开启	(与特殊工艺参数 – 拉手的加工方式 及 拉手内铣刀加工时 预留的拉手边沿的距离值 配合使用)
1	防爆边	该参数使用场景为,当使用拉手成型刀一刀成型加工时,成型刀上刃容易造成板材爆边。若开启该功能,生成刀路会先使用铣刀对拉手区域进行区域清除,再使用成型刀加工成型; 若关闭该功能,则直接使用成型刀加工。
2	拉手加工单次最大进给量	使用成型刀加工拉手时单次最大侧向进给量。
3	成型刀 CAM 配置	按照示例将对应工艺成型刀配置到 CAM 中。

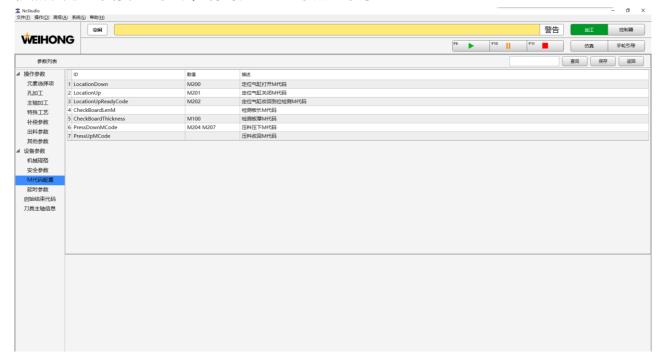
2.2.3 特殊工艺参数



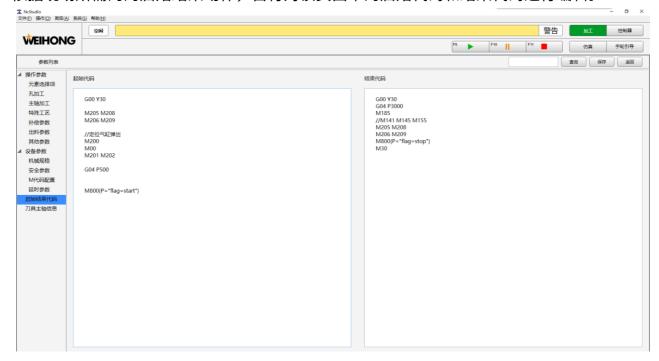
其中涉及到的部分参数的相关解释如下表:

编号	名称	说明
1	分别加工前后左右 相关工艺的刀具号	该参数同样用于判断是否有合适刀具。 无论是否有四把刀分别加工四个对应面,都需要按照 A、 B、C、D 的格式填入。
2	拉手内铣刀加工时 预留的拉手边沿的 距离值	(与 主轴加工 参数 – 拉手加工是否开启防爆边 以及 特殊工艺 参数 – 拉手的加工方式 配合使用)由于成型刀存在较窄的上刃和较宽的下刃,为了使防爆边取得较好的效果,需要让成型刀加工时上刃与板材存在一定距离,且下刃加工的深度足够,故开放该参数用于决定铣刀加工拉手区域的宽度。 该参数一般为 [(下刃直径 – 上刃直径)/2 – 经验数值]
3	合页加工方式	使用场景:市面上合页常常会存在R角较小的工件,而普通 铣刀由于直径过大无法加工,此时便需要清角刀针对这种R 角进行加工。 若启用清角刀,合页向导中则会开放出清角刀刀具选择。 加工合页外框时,使用普通铣刀加工出大概轮廓后,便会使 用清角刀对外框进行二次加工。
4	门锁加工方式	使用场景以及使用说明如 合页加工方式 类似。
5	斜槽加工方式	启用后在使用刀具加工斜槽时会分成两刀加工,先加工斜槽 的一半深度,接着反方向加工剩下一半深度。

2.2.4 机械规格参数

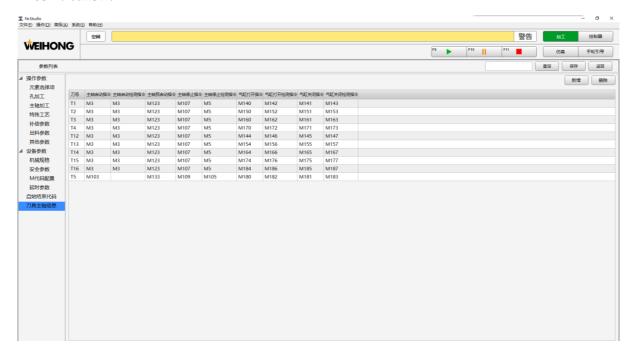

其中涉及到的部分参数的相关解释如下表:

编号	名称	说明
1	门墙柜机型压住板 件的最小长度 (Y 方向)	门墙柜机型压块压住板件的最小长度(Y 方向),用于显示 压板压在板子上的最小长度。
2	刀具单次加工远远 距离	垂直元素距离板子边沿的最大距离,小于该距离时,板子在 在同一侧加工,若加工元素距离四条边都大与该尺寸,则无 法加工。
3	门墙柜压料与不同 刀具的安全距离	设定每把刀具的刀尖点距离压板的安全距离,通常考虑该刀具加工时,当前刀具与压板边沿的差值,压板的零位与 Y 轴工件零点一致。
4	子板加工后抬高指 令	当某些元素由于行程或者安全位置不满足,需要认为旋转或者翻板前,机构通过插入的抬高指令移动至安全位置。

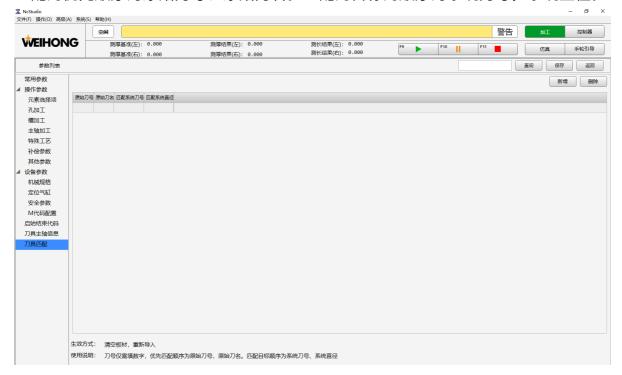

2.2.5 M 代码配置参数

依照该配置中存在的参数,将对应的 M 码填入即可。

2.2.6 启始结束代码参数

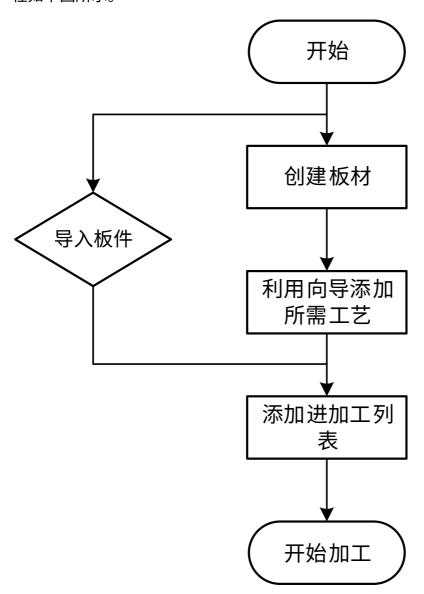

依据现场所需的的启始结束动作,自行对该页面中的启始代码和结束代码进行编辑。

2.2.7 刀具主轴信息参数


依据现场机型配置,对不同刀具进行 M 代码配置,右上角**新增**和**删除**按钮可对现有的刀具进行新增删减。

2.2.8 刀具匹配

导入刀路时,将刀路中的刀匹配上系统所使用的刀。


原始刀号和原始刀名是刀路中的刀具号名称,匹配系统刀号是对应的软件系统中的刀具号。 匹配的优先顺序为原始刀号、原始刀名。匹配的目标的顺序为系统刀号,系统直径。

3 使用指导

本部分会从整体操作流程出发,针对门墙柜软件特有的工艺向导进行细致说明,大致使用流程如下图所示。

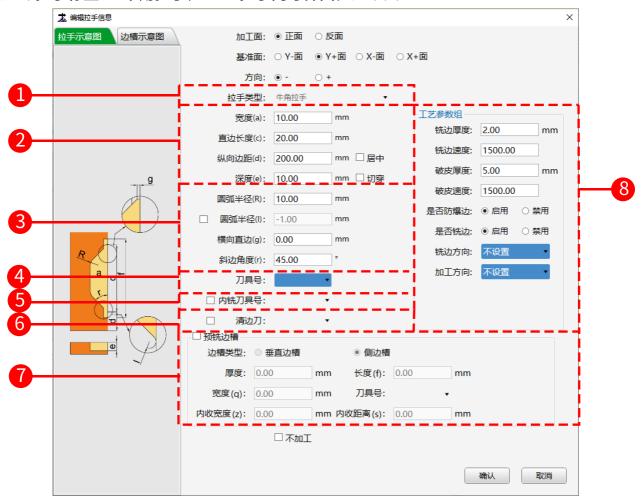
3.1 导入板件流程

若客户已事先使用拆单软件编辑好了相应的板材,仅需要解析并加工,则应用的是导入板件流程,步骤如下。

- 将鼠标放置在板件列表空白处右键,此时会弹出针对板件列表的操作选项。
- 根据板件文件后缀选择对应的导入选项,目前软件支持 mpr、ban、dxf、xml、cix 等多种格式。
- 3. 选中对应的格式后会弹出文件选择界面,选择相应的板件文件即成功导入,导入后可单 击选中进行查看,亦可在**板件显示**处对板件进行编辑,或使用向导列表对板件增加工艺。
- 4. 右键希望进行加工的板件或直接双击即可将其添加进加工列表。

3.2 自建板件流程

若客户拆单软件不支持某种工艺或希望使用本软件直接编辑并加工,则可以使用自建板件流程,在此先针对该流程中使用最多的**向导列表**展开介绍。

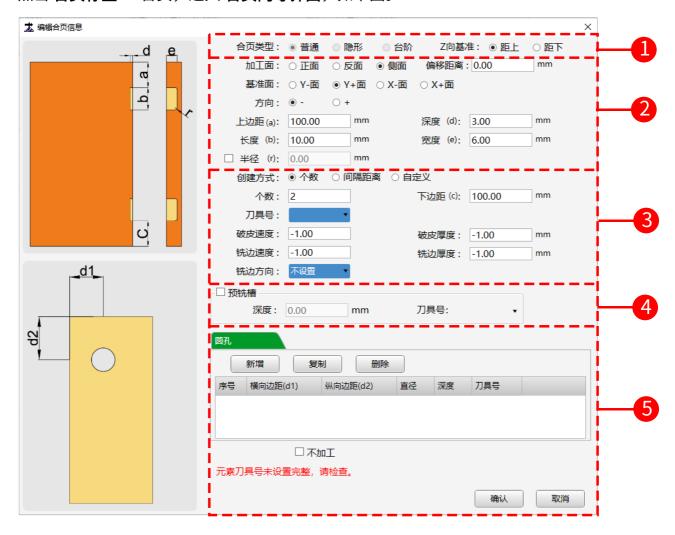

整个自建流程如下:

- 1. 首先使用**创建板件**创建出所期望的板件大小,创建完成后该空板会进入板件列表中。
- 在向导列表中选择合适的工艺进行创建,并放置在板件中合适的位置,也可根据需要对板件进行旋转、镜像、翻转等操作,并调整合适的视角。
- 3. 右键希望进行加工的板件或直接双击即可将其添加进**加工列表**。

3.2.1 拉手向导

点击 **拉手标签** → **牛角拉手**,进入 **拉手向导界面**,如下图。

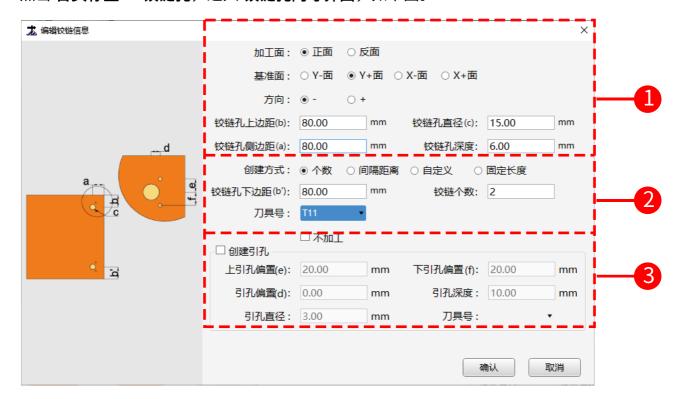
编号	名称	说明
1	拉手类型	在该处选择希望编辑的拉手类型。
2	拉手形状	当选择对应的拉手类型后,需按照图示,将拉手相关数据填入,供向导生成图形。
3	圆弧	部分拉手有圆角,这里设置圆弧的半径。
4	刀具号	在该处选择用于加工拉手本体的刀具。
5	内铣刀具号	与 CAM 参数中 拉手的加工方式 相关联,当参数选择为 优 先内铣 时,则会开放内铣刀具号。其作用为先使用内铣刀 具号完成拉手外部轮廓加工,再使用刀具号进行成型加工,多用于牛角刀+直铣刀的组合。



编号	名称	说明
6	清边刀具号	在使用刀具号加工完成后,调用清边刀具号沿着轮廓边沿清除毛边,提高平整度。
7	预铣边槽	与 CAM 参数中 是否显示拉手预铣工艺 相关联。当选择为 竖直边槽时,在填写边槽形状相关参数后,会使用竖直铣 刀对拉手侧面进行加工。当选择为侧边槽时,会使用侧面 铣刀进行加工,需要人工判断所期望加工的边槽需要使用 哪个方向的刀进行构图加工。侧铣边槽中构建图形参数图 示如下,A 为宽度,B 为内收距离,C 为内收宽度。
8	工艺参数	设置工艺参数,包括破皮(两端进刀破皮)参数;铣边 (先将封边皮铣掉一层薄边,减少破皮的几率)参数。

3.2.2 合页向导

点击 **合页标签** → 合页,进入 **合页向导界面**,如下图。



编号	名称	说明
1	合页类型	选择编辑的合页类型。
	绘图	加工面:元素加工所在面(门墙柜机型通常在侧面)。
		基准面:侧面元素所在面(门墙柜机型通常在 Y+面)。
2		方向: 与边距组合使用,可切换边距的基准边距。
		边距、深度、长度、宽度: 合页的尺寸。
		半径:圆角的半径。
	创建方式以及工艺 参数	个数:去除上边距和下边距各一个合页,剩余的长度按照剩
		余个数平均分配。
		间隔距离:去除第一个距离板头/板尾上边距的合页,剩余
3		板长按照间隔距离排布,直至超出板材。
		自定义: 自定义距离板头/板尾的距离创建多个。
		注:板材长度尺寸变化之后,合页位置按照以上规则生成
		工艺参数:对于居上/居下的元素,刀具可单独设置破皮与
		铣边参数,以确保加工效果(仅普通合页支持)。
4	预铣槽	可选在板材正面添加宽度与普通合页深度一致的垂直贴边
		槽,通过优先使用垂直刀具加工该槽,刀具单独设置,以保
		证合页的加工效果。
5	圆孔	可选在侧面添加圆形引孔。

3.2.3 铰链&天地铰链向导

点击 **合页标签** → **铰链孔**,进入 **铰链孔向导界面**,如下图。

编号	名称	说明
1	绘图	加工面:元素加工所在面(门墙柜机型通常在侧面)。
		基准面:侧面元素所在面(门墙柜机型通常在 Y+面)。
'		方向:与边距组合使用,可切换边距的基准边距。
		边距、深度、长度、宽度: 合页的尺寸。
	创建方式以及工艺 参数	个数:去除上边距和下边距各一个合页,剩余的长度按照剩
		余个数平均分配。
		间隔距离:去除第一个距离板头/板尾上边距的合页,剩余
2		板长按照间隔距离排布,直至超出板材。
		自定义: 自定义距离板头/板尾的距离创建多个。
		固定规则:除去上下边距后两个铰链孔,根据自定义的长度
		区间和个数平均分配(注:板材长度尺寸变化之后,铰链孔
		位置按照以上规则生成。)

编号	名称	说明
3	引孔	可选引孔的创建,可单独设置加工的刀具号,对于一体式的 铰链钻(3 把钻头同时加工),引孔无需添加。

3.2.3.1 天地铰链柜体

天地铰链分为天地铰链(柜体),天地铰链(柜门),均可在合页标签下。

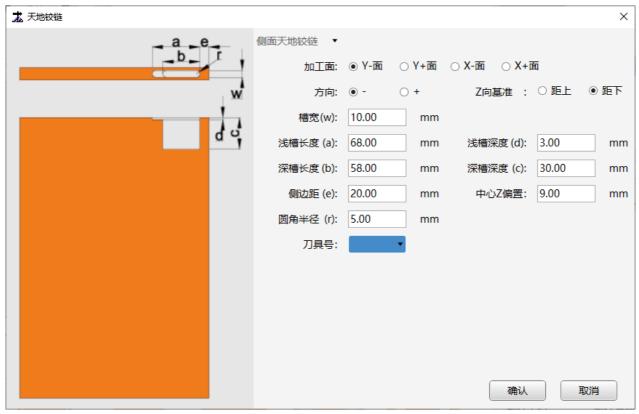
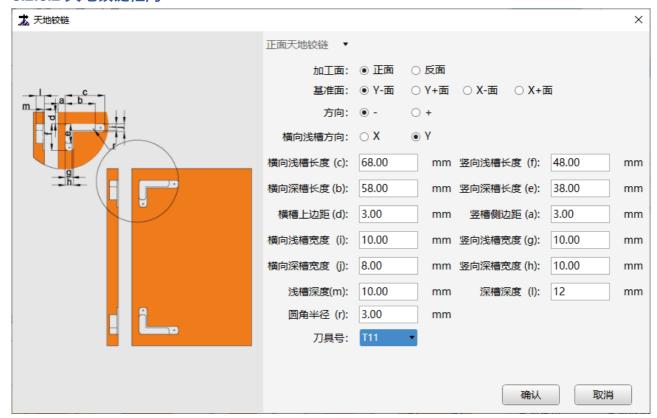
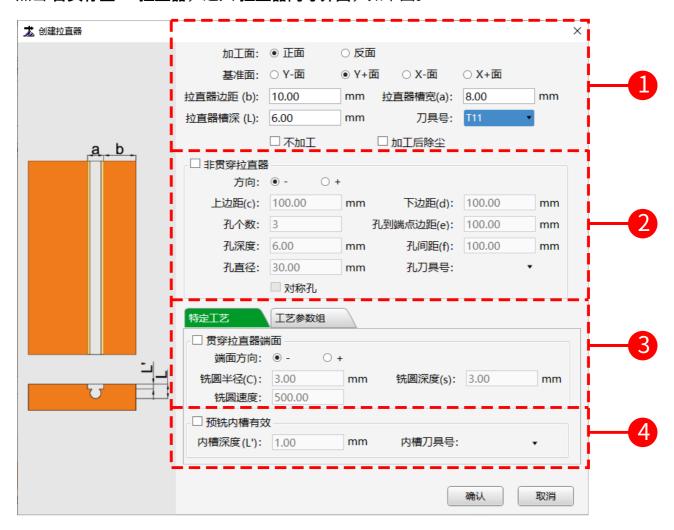


图 3-1 天地铰链(柜体)

编号	名称	说明
		加工面:天地铰链柜体所在面(通常在侧面)。
		基准面:柜体元素所在面。
		槽宽:浅槽和深槽共用一个槽宽。
1	天地铰链柜体绘图	方向:与侧边距组合使用,确定铰链的位置。
		Z 向基准:设定天地铰链的中心距离上表面/下表面的距离。
		中心 Z 偏置:槽中心距离上表面/下表面的偏置,其余参数 参考对应字母设置即可。

3.2.3.2 天地铰链柜门

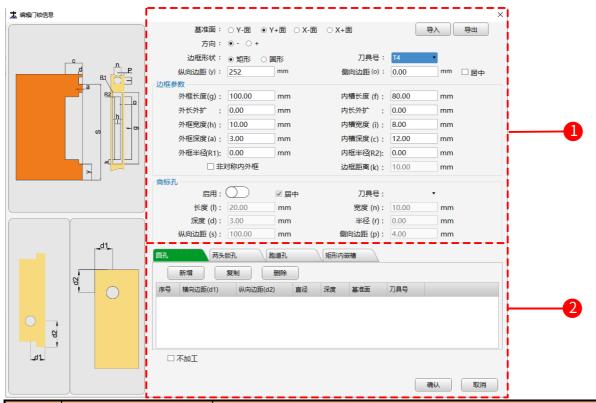



图 3-2 天地铰链(柜门)

编号	名称	说明
		加工面:柜门一般在正面或者反面进行创建。
		基准面:柜门元素所在面。
		横向浅槽方向:如果是 X 则横向浅槽平行于 X,如果是 Y 则
1	天地铰链柜门绘图	横向浅槽平行于Y,与横槽上边距组合使用确定横向浅槽的
		位置。
		浅槽/深槽深度:不超过板件的厚度。
		圆角半径:浅槽/深槽四个边角为圆角时,半径的大小。

3.2.4 拉直器向导

点击 **合页标签** → **拉直器**,进入 **拉直器向导界面**,如下图。

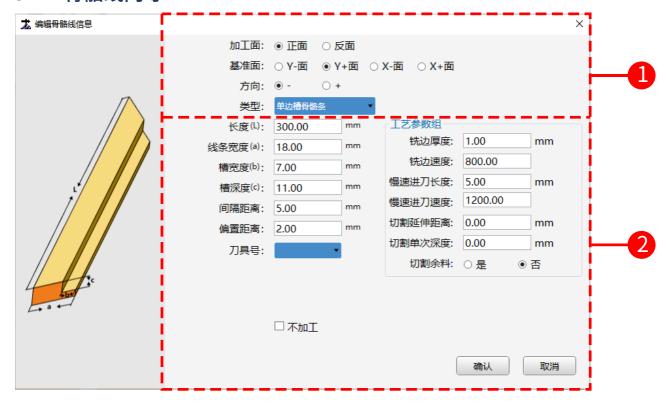


编号	名称	说明
	绘图	加工面:元素加工所在面(门墙柜机型通常在侧面)。
1		基准面:侧面元素所在面(门墙柜机型通常在 Y+面)。
'		方向:与边距组合使用,可切换边距的基准边距。
		其余参数参考对应字母设置即可。
2	非贯穿拉直器	拉直器为非贯穿型,可设置两端的边距以及添加圆形孔并设置圆形孔的加工刀具。
		通过拉直器刀具铣削断面试的拉直器能够嵌入至板材表面,
		端面方向:设置所需要加工的端面。
3	贯穿形拉直器断面	铣圆深度:端面加工的深度。
		铣圆板件:端面加工的半径。
		铣圆速度:端面加工速度。
	预铣内槽有效	为防止使用拉直器刀具直接加工拉直器导致刀具磨损过快,
		可使用内铣槽刀具,先在表面铣出一刀造型,再使用拉直器
4		刀具进行加工。
		内铣深度:内铣槽的加工深度,通常与拉直器刀的大径厚度
		一致。
		内铣刀具号: 内铣加工所使用的刀具号。

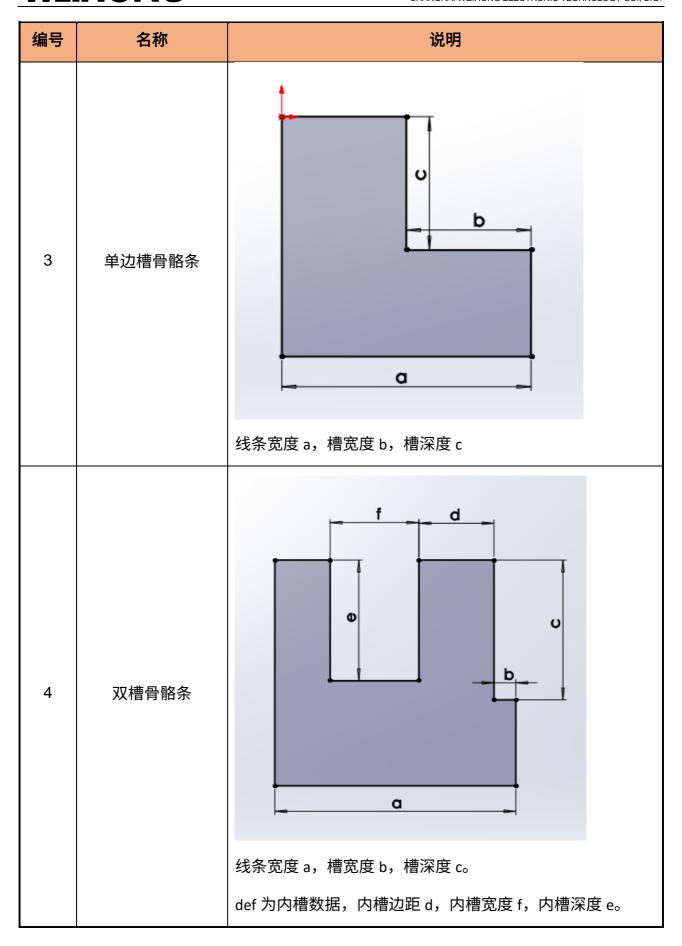
3.2.5 门锁向导


点击 **门标签 → 门锁**,进入 **门锁向导界面**,如下图。

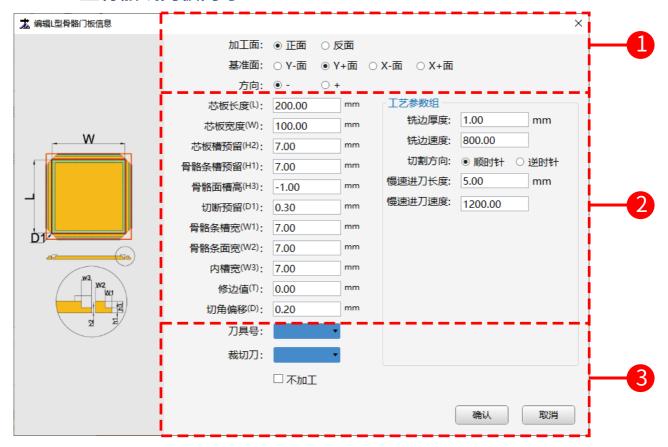
编号	名称	说明
	绘图	加工面:元素加工所在面(门墙柜机型通常在侧面)。
		基准面:侧面元素所在面(门墙柜机型通常在 Y+面)。
		方向:与边距组合使用,可切换边距的基准边距。
		门锁侧面工艺分区圆形门锁和矩形门锁。
1		可选加工商标孔,CAM 参数中【门锁的加工方式】设置为 1
		之后可启用清角刀,清角刀具号可设,在门锁加工完成之
		后,会使用清角刀沿着外框加工一圈以保证直角的 R 角够
		小。
		其余参数参考对应字母设置即可。
2	其他加工元素添加	可在板件内添加其他形状的孔,通过点击【添加】【删除】
		【复制】可操作其他加工元素。通过选择基准面确定元素所
		在位置和方向。


3.2.6 闭门器向导

编号	名称	说明
		类型:闭门器分为推门侧和门框侧。
		基准面:闭门器元素所在面。
		方向:与纵向边距组合使用,确定闭门器在所在边的位置。
1	绘图	横向边距:闭门器在侧面,横向边距为距离板子顶/底面的距离。
		Z 向基准: Z 向基准为距上,横向边距为闭门器外框上边缘
		距离板材顶面的距离;Z向基准为距下,横向边距为闭门器
		外框下边缘距离板材底面的距离。
2	内框/外框	设置闭门器内框和外框的长宽及深度,选定加工内框和外框的刀具。
3	非对称槽	槽为非对称槽时勾选非对称槽,设定槽的长度宽度和边距。

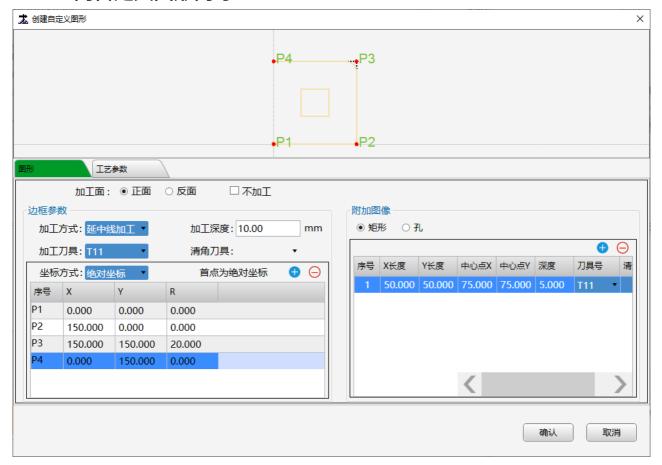


3.2.7 骨骼线向导

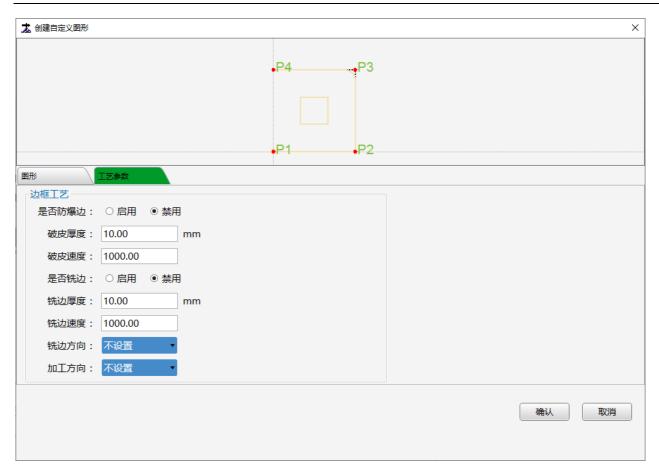

编号	名称	说明
	绘图	加工面:骨骼线在正面/反面加工。
1		基准面: 创建骨骼线所在的面。
1		方向:骨骼线创建的方向,Y+、X+等。
		类型:单边槽骨骼条,双边槽骨骼条。
2	骨骼线特征	设置骨骼线的长度、槽的宽度、间隔距离及偏置距离。
		工艺参数组,设定骨骼线加工的速度。

3.2.8 L 型骨骼线门板向导

编号	名称	说明
		加工面: 骨骼线门板加工所在面。
1	绘图	基准面: 骨骼线门板元素所在面。
		方向: 创建的骨骼线门板方向。
2	L 型骨骼线门板特 征	设置芯板的长度和宽度,设置骨骼条和芯板槽的宽度和预留。
3	刀具号	加工骨骼线门板的刀具号、裁剪的刀具号。


3.2.9 T型骨骼线门板向导

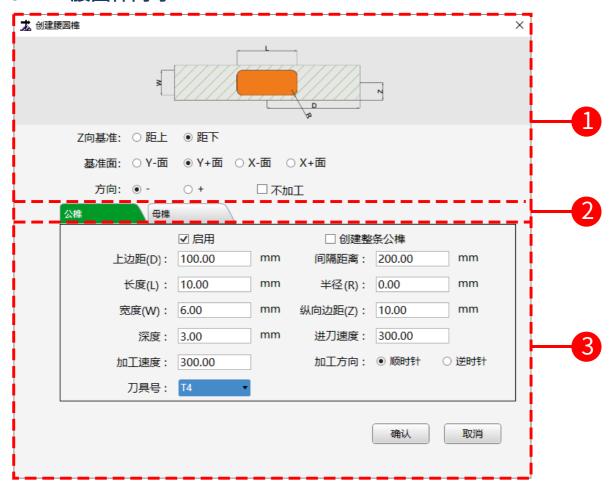
编号	名称	说明
1	绘图	加工面: T型骨骼线门板加工所在面,一般为正反面。 基准面: T型骨骼线门板元素所在面。 方向: 创建的T型骨骼线门板方向。
2	工艺参数组	铣边的厚度和铣边的速度。如需慢速进刀,设置进刀的长度和速度,切割方向分为顺时 针和逆时针。



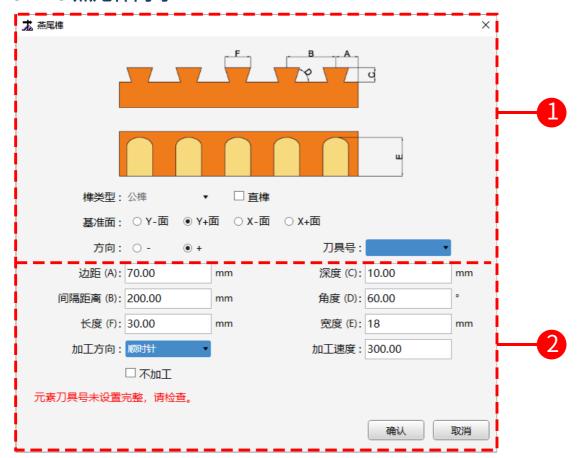
3.2.10 门自定义图形向导

编号	名称	说明
	图形	边框参数: 分为铣底和沿中线加工。
1		坐标方式: 绝对坐标和相对坐标。
'		点击加号,新增坐标点,系统会自动按照序号将其连接起 来,r 为圆角半径。
2	附加图像	附加矩形和孔的图像,点击加号,创建矩形/孔的 XY 长度, 设置中心点的 XY、加工深度、加工刀具号。

编号	名称	说明
1	工艺参数	设定边框工艺、是否防爆边、破皮和铣边的参数。


3.2.11 百叶窗向导

编号	名称	说明
	绘图	Z 向基准:百叶窗下板圆弧中心距离上表面/下表面。
1		基准面:百叶窗元素所在面。
		方向: 创建百叶窗的方向,和边距组合使用。
2	创建方式	创建方式: 个数、间隔距离及自定义。
		个数创建:设置好上下边距后,在所在边创建设定数量的元素,且百叶窗元素之间的间隔是等距的。
		间隔距离创建:去除上下边距,剩余的边按照间隔距离进行排列,注意不要超出板材。
		自定义:自定义元素的上下边距进行创建。


3.2.12 腰圆榫向导

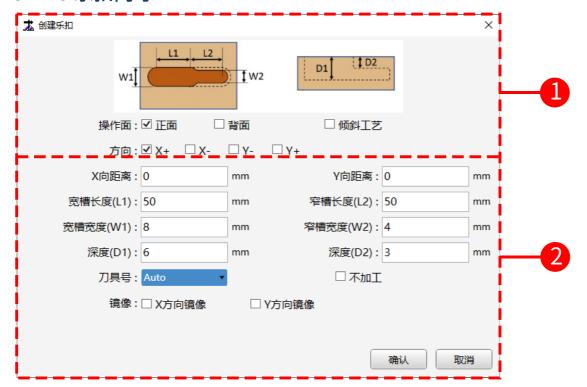
编号	名称	说明
1	绘图	Z 向基准: 腰圆榫创建在板材的侧面,设置腰圆榫中心距离 上表面/下表面为基准。 基准面: 腰圆榫创建元素的面的方向。
2	腰圆榫类型	榫类型分为公榫和母榫,点击切换公榫/母榫界面。 勾选启用,启用公榫/母榫。
3	榫的特征	榫的位置由上边距和创建的方向决定,加工方向分为顺时针 加工和逆时针加工。

3.2.13 燕尾榫向导

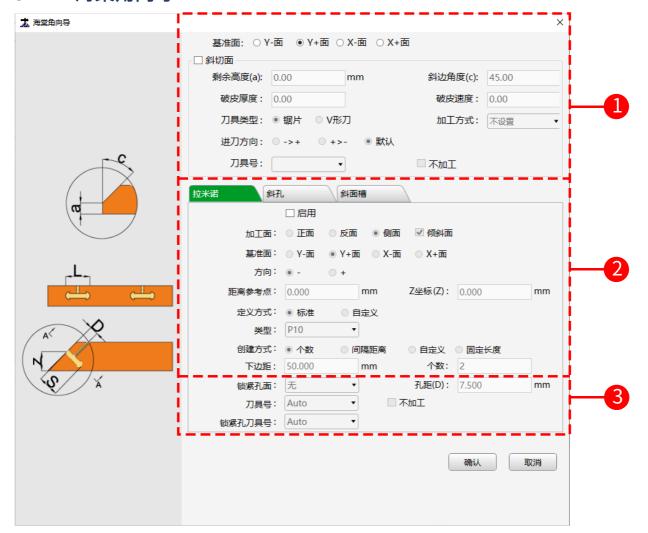
编号	名称	说明
1	绘图	榫类型分为公榫和母榫,按形状可分为直榫和燕尾榫,如果 是直榫,勾选直榫。
2	榫特征	边距和方向确定榫所在的位置,间隔距离确定榫在这条边上的数量。

3.2.14 正面拉米诺向导

编号	名称	说明
	绘图	加工面:正反拉米诺所在面,一般是正反面。
1		基准面: 拉米诺以哪个面为基准创建。
		方向:和偏移 X 偏移 Y 一起确定拉米诺在板材上的位置。
2	定义方式	标准定义:按照行业标准创建拉米诺 P10,P15 等。
		自定义拉米诺: 自定义拉米诺的长度和深度。
		创建方式: 个数、间隔距离、自定义及固定长度。


3.2.15 侧面/斜面拉米诺向导

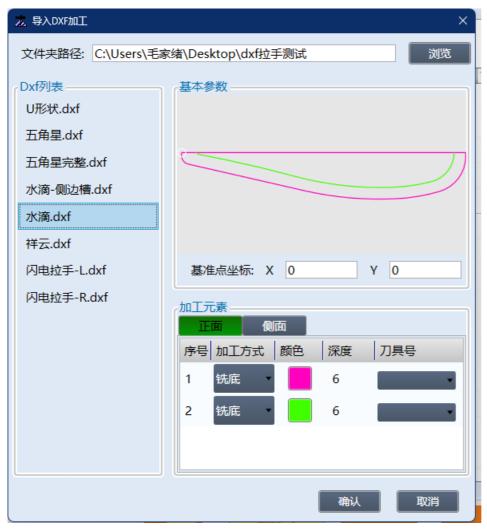
编号	名称	说明
	绘图	侧面拉米诺: 勾选侧面。
1		斜面拉米诺: 勾选侧面,倾斜面。
'		Z 坐标,为拉米诺中心的 Z 坐标。
		方向和距离参考点决定拉米诺的位置。
2	定义方式	标准定义和自定义。
		创建方式:通过下边距、间隔距离、个数确定。
	锁紧孔	设置锁紧孔的面、孔距、加工的刀具号。
3		刀具号:设置加工拉米诺的刀具号。
		锁紧孔刀具号:拉米诺的锁紧孔所用的刀具号。


3.2.16 乐扣向导

编号	名称	说明
1	绘图	设定乐扣所在面:正面/背面/倾斜工艺。
		方向: 乐扣朝向方向。
2	乐扣特征	设置乐扣的尺寸,窄槽和宽槽的长度、宽度、深度等,深度不能超过板材厚度。

3.2.17 海棠角向导

编号	名称	说明
1	绘图	倾斜面的定义。具体定义方式参考示意图中的描述。
		加工刀具可选 V 型刀、锯片。
		进刀方向: 刀具加工的方向。
		斜切面刀具号:设置加工倾斜面的刀具号。
2	海棠角特征	距离参考点:该参考点为创建拉米诺时所选取的基准点,并
		不一定为板材边角处。
		Z 坐标: Z 坐标为拉米诺工艺底部在侧面的高度。
		定义方式:分为标准及自定义两种方式。向导提供 P10、
		P14 和 P15 三种标准格式。

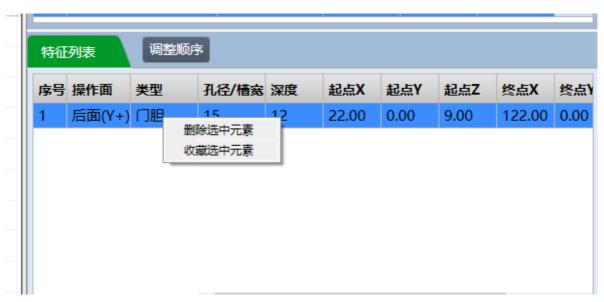


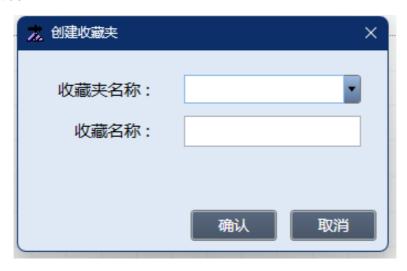
编号	名称	说明
		定义方式选择为自定义时,需设置以下参数。
		深度: 拉米诺工艺加工的深度,斜面拉米诺深度如图所示。
		长度: 拉米诺工艺在板件表面的长度。
		跳动距离: 在拉米诺成型刀进行加工时,需要往上下侧外扩
		的距离,根据(拉米诺工件的宽度 – 拉米诺成型刀厚度)/2
		可得。
		锁紧孔面:使用场景为部分拉米诺工件存在需要使用锁紧
		孔,对两个扣合的拉米诺进行锁紧的操作。可选为无、正面 以及反面。
		孔距: 锁紧孔中心距离拉米诺工件上部的距离,如图所示,
		A 为孔距。
3	刀具号	刀具号:设置加工拉米诺的刀具号。
		锁紧孔刀具号:海棠角的锁紧孔所用的刀具号。

3.3 DXF 文件嵌入加工

点击 基础元素标签 → dxf 铣型,进入 dxf 嵌入加工向导界面,如下图。

- 1. 点击浏览,选择 dxf 图形所在的目录。
- 2. dxf 列表中会显示当前选中的目录下已存在的 dxf 图形。
- 3. 在基本参数上方会显示当前解析出的图形形状,通过改变基准点坐标选择确定当前图形 在板件内的位置。
- 4. 加工元素分为正面和侧面。
 - 对于封闭图形可设置铣底或者沿中线加工,对于非封闭图形仅支持沿中线加工。
 - 系统根据颜色区分图形,各图形可单独设置加工方式、深度、以及刀具号。


注: dxf 的绘图需要按照维宏要求进行绘制,否则可能无法正常识别。


3.4 模板收藏

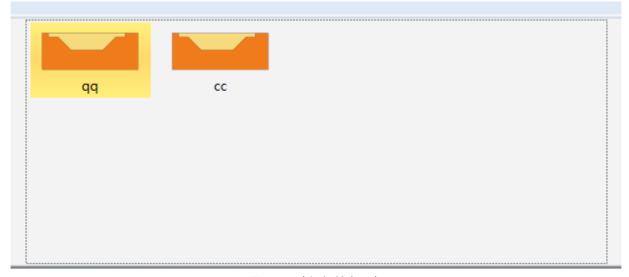
软件支持已有图形收藏并组合使用。操作如下:

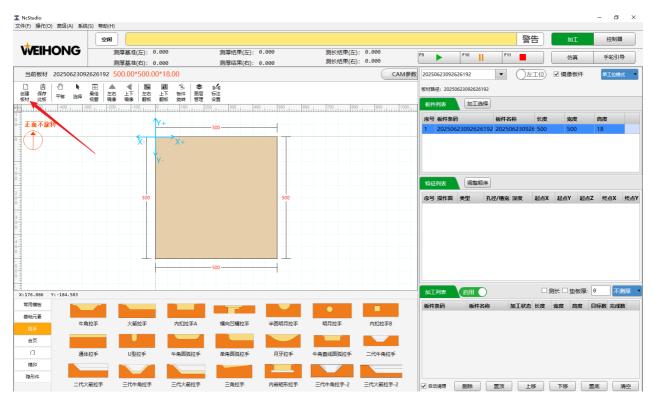
• 在【特征列表】中选择需要收藏的元素。

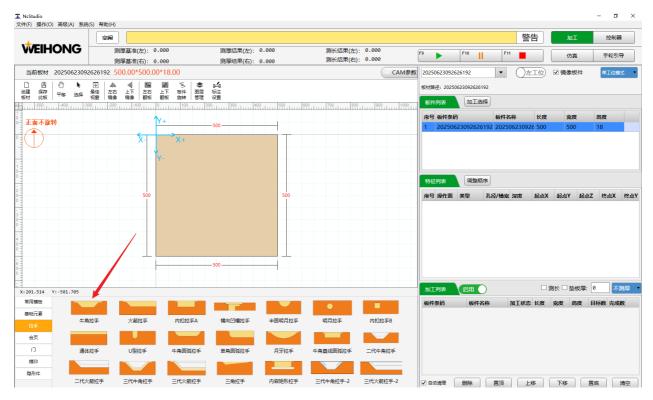
• 设置收藏模板的收藏夹名称以及收藏名称,若需要添加至已存在的收藏夹,可通过右侧的下拉菜单选择。

点击【常用模板】,找到所需要的模板,支持全部添加(右键收藏夹名称),或者单个添加(双击单个元素)至当前板件。

图 3-3 添加所有元素

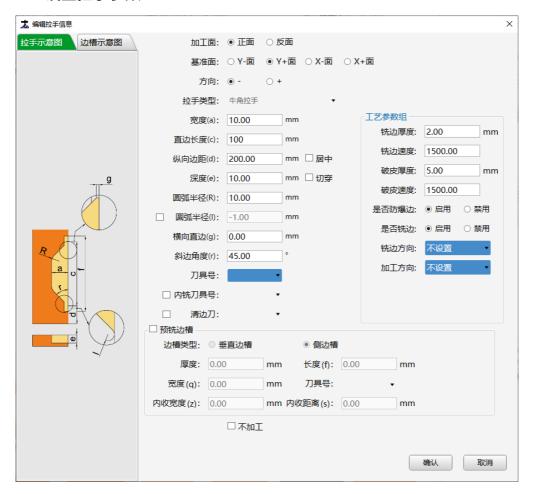



图 3-4 双击添加单个元素

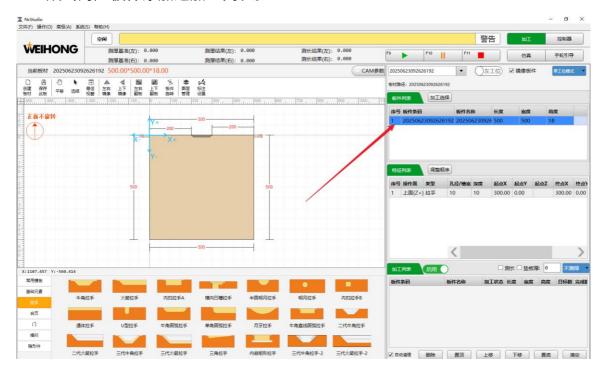

4 使用举例

该部分针对如何进行自建板材流程进行举例说明,所选工艺为牛角拉手工艺。

1. 进行**创建板件**,点击创建板件即可。



2. 使用拉手标签中选择所需要的拉手,如牛角拉手,并点击确认。



3. 设置拉手参数

4. 双击对应板件添加进加工列表。

5. 点击开始即可开始进行加工。

法律声明

为维护自身、用户的合法权益,在您安装、复制、使用我公司软件产品同时,您已经充分认知并承诺,您已经完全接受我公司下列声明事项:

不在本声明规定的条款之外,使用、拷贝、修改、租赁或转让本系统或其中的任何一部分。

一、 用户使用要求:

- 1. 只在一台机器上使用本系统;
- 2. 仅为在同一台机器上使用,出于备份或档案管理的目的,以机器可读格式制作本系统的 拷贝;
- 仅在我公司书面同意,且他方接受本声明的条款和条件的前提下,将本系统及许可声明 转让给另一方使用;
- 4. 如若转让我公司软件产品,原文档及其伴随文档的所有拷贝必须一并转交对方,或将未 转交的拷贝全部销毁;
- 5. 只在以下之一前提下,将本系统用于多用户环境或网络系统上:
 - 1. 本系统明文许可可以用于多用户环境或网络系统上;
 - 2. 使用本系统的每一节点及终端都已购买使用许可。
- 6. 不对本系统再次转让许可;
- 7. 不对本系统进行逆向工程、反汇编或解体拆卸;
- 8. 不拷贝或转交本系统的全部或部分,但本声明中明文规定的除外。
- 9. 您将本系统或拷贝的全部或局部转让给另一使用方之时,您的被许可权即自行终止。

二、 知识产权:

我公司对本系统及文档享有完全的知识产权,受中国知识产权法及及国际协约条款的保护。 您不得从本软件中去掉其版权声明;并保证为本系统的拷贝(全部或部分)复制版权声明; 您承诺制止以任何形式非法拷贝本系统及文档。

我公司可随时对软件产品进行更新、升级,您可根据需要实时关注我公司官网。

三、 许可终止:

您若违返本声明的任一条款与条件,我公司可随时终止许可。终止许可之时,您应立即销毁本系统及文档的所有拷贝文件,或归还给我公司。

至此,您肯定已经详细阅读并已理解本声明,并同意严格遵守各条款和条件。

上海维宏电子科技股份有限公司